Closing today: HW_6A,6B Closing Wed: \quad HW_6C, 7A
$\Delta x=\quad, x_{0}=\quad, x_{1}=\quad$,
Exam 2 is Thurs: $6.3, \overline{6} .4,6.5,7.1-7.5,7.7,7.8$

$$
x_{2}=\quad, x_{3}=\quad, x_{4}=
$$

Trapezoid rule:
7.7 Summary: Two new approx. methods 1

Here is an example for $\mathrm{n}=4$ subdivisions: $\frac{1}{2} \Delta x\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+f\left(x_{4}\right)\right]$

1. Compute $\Delta x=\frac{b-a}{4}$.

Label the tick marks: $\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{a}+\boldsymbol{i} \Delta \boldsymbol{x}$
2. Use formula.

Entry Task: With $\mathrm{n}=4$, use both new methods to approximate (just set up)

$$
\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-\frac{1}{2} x^{2}} d x
$$

Simpson's rule:
$\frac{1}{3} \Delta x\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]$
7.7 Quick Derivation Notes:

Trapezoid Rule:
Shaded Area $=\frac{h}{2}\left(y_{i}+y_{i+1}\right)$

Simpson's Rule: If the curve below is a parabola ($\mathrm{y}=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$) that goes through the three indicated points, then

Shaded Area $=\frac{h}{3}\left(y_{i}+4 y_{i+1}+y_{i+2}\right)$

7.8 Improper Integrals

Motivation:

Consider the function $f(x)=\frac{1}{x^{3}}$.
Come the area under this function from...

1. $x=1$ to $x=t$
2. $x=1$ to $x=2$

3. $x=1$ to $x=100$

Definition: (Book terms: infinite integral of integration, type 1 improper)

$$
\begin{aligned}
& \int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \\
& \int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
\end{aligned}
$$

Example:

1. $\int_{0}^{\infty} \frac{1}{x^{3}} d x=$

If the limit exists and is finite, then we say the integral converges. Otherwise, we say it diverges.

$$
\int_{-\infty}^{\infty} f(x) d x=\lim _{r \rightarrow-\infty} \int_{r}^{0} f(x) d x+\lim _{t \rightarrow \infty} \int_{0}^{t} f(x) d x
$$

In this case, we say it converges only if both limits separately exist and are finite.

Example:

2. $\int_{-1}^{\infty} e^{-2 x} d x=$
3. $\int_{1}^{\infty} \frac{1}{x} d x=$

Definition: (Book terms: infinite discontinuity, type 2 improper) If $f(x)$ has a discontinuity at $x=a$, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

If $f(x)$ has a discontinuity at $x=b$, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

If the limit exists and is finite, then we say the integral converges. Otherwise, we say it diverges.

If $f(x)$ has a discontinuity at $x=c$ which is strictly between a and b, then

$$
\int_{a}^{b} f(x) d x=\lim _{r \rightarrow c^{-}} \int_{a}^{r} f(x) d x+\lim _{t \rightarrow c^{+}} \int_{t}^{b} f(x) d x
$$

In this case, we say it converges only if both limits separately exist and are finite.

Example:

2. $\int_{0}^{2} \frac{x}{x-2} d x=$

Limits Refresher

1. If stuck, plug in values "near" t.
2. Know your basic functions/values:
$\lim _{t \rightarrow \infty} \frac{1}{t^{a}}=0, \quad$ if $a>0$.
$\lim _{t \rightarrow \infty} \frac{1}{e^{a t}}=0, \quad$ if $a>0$.
$\lim _{t \rightarrow \infty} t^{a}=\infty, \quad$ if $a>0$.
$\lim _{t \rightarrow \infty} \ln (t)=\infty$.
$\lim _{t \rightarrow 0^{+}} \ln (t)=-\infty$.
3. For indeterminant forms, use
algebra and/or L'Hopital's rule
Examples:
$\lim _{t \rightarrow 1} \frac{t^{2}+2 t-3}{t-1}=$
$\lim _{t \rightarrow \infty} \frac{\ln (t)}{t}=$
$\lim _{t \rightarrow \infty} t^{2} e^{-3 t}=$
$t \rightarrow \infty$

Aside:

A few general notes on comparison:
Suppose you have two functions $f(x)$ and $\mathrm{g}(\mathrm{x})$ such that $0 \leq \mathrm{g}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x})$ for all values.
(a) If $\int_{1}^{\infty} f(x) d x$ converges, then $\int_{1}^{\infty} g(x) d x$ converges.
(b) If $\int_{1}^{\infty} g(x) d x$ diverges, then $\int_{1}^{\infty} f(x) d x$ diverges.

You can verify that

$$
\begin{aligned}
& \int_{1_{1}^{\infty}}^{\infty} \frac{1}{x^{p}} d x, \quad \text { converges for } p>1 \\
& \int_{1}^{\infty} e^{p x} d x, \quad \text { converges for } p<0
\end{aligned}
$$

And you can compare off of these to sometimes quickly tell is something is converging or diverging (without calculating anything)

